Omega-7s

Omega-7s are a class of monounsaturated fatty acids that, while not as widely known and researched as their cousins, the omega-3s and omega-6s, also plays a role in human health. Palmitoleic acid and vaccenic acid are two omega-7 fats that have been garnering attention. There are few food sources of these two fats. Vaccenic acid is mostly consumed through dairy and meat from ruminant animals that were raised on pasture.1 Palmitoleic acid is found in sea buckthorn, macadamia nuts, and some fish (e.g., anchovy), and the human body is capable of making it as well.

We’re still uncovering the role that omega-7s play in human health, but in vitro and animal studies have found them to modulate inflammation, support healthy insulin function and glucose uptake, to promote skin health, modulate appetite-controlling hormones, and protect against fat accumulation in the liver. 2 3 4 5 6 7 8 9 10 11 Animal studies have shown palmitoleic acid to be a lipokine, a compound with hormone-like actions that is able to communicate with organs and regulate metabolic homeostasis, but this role is yet to be proven in humans.12 While more research in humans is needed, the available research does support omega-7s’ role in skin health and blood sugar modulation.13 14 15 16 17

Sea buckthorn (Hippophaes rhamnoides) has been studied on its own, and although many of its benefits are believed to come from its high concentration of omega-7s, it also contains vitamins, carotenoids, and flavonoids. Human and animal studies have shown it also has beneficial effects on dry eyes and in supporting skin hydration and healing.18 19 20 21 22

References


  1. Elgersma, A., Ellen, G., Tamminga, S. (2004, Jan). Rapid decline of contents of beneficial omega-7 fatty acids in milk from grazing cows with decreasing herbage allowance. European Grasslands Federation Conference – Grasslands Science in Europe, 9, 1136-1138. Retrieved from: https://www.researchgate.net/publication/40125567_Rapid_decline_of_contents_of_beneficial_omega-7_fatty_acids_in_milk_from_grazing_cows_with_decreasing_herbage_allowance
  2. Song, I.B., Gu, H., Han, H.J., Lee, N.Y., Cha, J.Y., Son, Y.K., Kwon, J. (2018). Omega-7 inhibits inflammation and promotes collagen synthesis through SIRT1 activation. Applied Biological Chemistry, 64, 433-439. https://doi.org/10.1007/s13765-018-0377-1
  3. Blewett, H.J., Gerdung, C.A., Ruth, MR., Proctor, S.D., Field, C.J. (2009). Vaccenic acid favourably alters immune function in obese JCR: LA-cp rats. British Journal of Nutrition, 102(4), 526-536. DOI: https://doi.org/10.1017/S0007114509231722
  4. Dimopoulos, N., Watson, M., Sakamota, K., Hundal, H.S. (2006). Differential effects of palmitate and palmitoleate on insulin action and glucose utilization in rat L6 skeletal muscle cells. Biochem J, 399(3), 473-481.  https://doi.org/10.1042/BJ20060244
  5. Yang, Z.H., Miyahara, H., Hatanaka, A. (2011). Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay mice with genetic type 2 diabetes. Lipids Health Dis, 10, 120. doi: 10.1186/1476-511X-10-120
  6. de Souza, C.O., Valenzuela, C.A., Baker, E.J., Miles, E.A., Rosa Neto, J.C., Calder, P.C. (2018). Palmitoleic acid has stronger anti-inflammatory potential in human endothelial cells compared to oleic and palmitic acids. Mod Nutr Food Res, 62(20), e1800322.  DOI: 10.1002/mnfr.201800322
  7. Matthan, N. R., Dillard, A., Lecker, J. L., Ip, B., & Lichtenstein, A. H. (2009). Effects of dietary palmitoleic acid on plasma lipoprotein profile and aortic cholesterol accumulation are similar to those of other unsaturated fatty acids in the F1B golden Syrian hamster. The Journal of nutrition139(2), 215–221. https://doi.org/10.3945/jn.108.099804
  8. Lu, X., Zhao, X., Feng, J., Liou, A. P., Anthony, S., Pechhold, S., Sun, Y., Lu, H., & Wank, S. (2012). Postprandial inhibition of gastric ghrelin secretion by long-chain fatty acid through GPR120 in isolated gastric ghrelin cells and mice. American journal of physiology. Gastrointestinal and liver physiology303(3), G367–G376. https://doi.org/10.1152/ajpgi.00541.2011
  9. Yang, Z. H., Takeo, J., & Katayama, M. (2013). Oral administration of omega-7 palmitoleic acid induces satiety and the release of appetite-related hormones in male rats. Appetite65, 1–7. https://doi.org/10.1016/j.appet.2013.01.009
  10. Souza, C.O., Teixeira, A.A.S., Lima, E.A., Batatinha, H.A.P., Gomes, L.M., Carvalho-Silva, M., Mota, I.T., Streck, E.L., Hirabara, S.M., Neto, J.C.R. (2014). Palmitoleic acid (N-7) attenuates the immunometabolic disturbances caused by a high-fat diet independently of PPARα. Mediator of Inflammation, https://doi.org/10.1155/2014/582197
  11. Cruz, M. M., Simão, J. J., de Sá, R. D. C. C., Farias, T. S. M., da Silva, V. S., Abdala, F., Antraco, V. J., Armelin-Correa, L., & Alonso-Vale, M. I. C. (2020). Palmitoleic Acid Decreases Non-alcoholic Hepatic Steatosis and Increases Lipogenesis and Fatty Acid Oxidation in Adipose Tissue From Obese Mice. Frontiers in endocrinology11, 537061. https://doi.org/10.3389/fendo.2020.537061
  12. Bermúdez, M.A., Pereira, L., Fraile, C., Valerio, L., Balboa, M.A., Balsinde, J. (2022). Roles of palmitoleic acid and its positional isomers, hypogeic and sapienic acids, in inflammation, metabolic diseases and cancer. Cells, 11(14), 2146. doi: 10.3390/cells11142146
  13. Koh, Y. G., Seok, J., Park, J. W., Kim, K. R., Yoo, K. H., Kim, Y. J., & Kim, B. J. (2023). Efficacy and safety of oral palmitoleic acid supplementation for skin barrier improvement: A 12-week, randomized, double-blinded, placebo-controlled study. Heliyon9(6), e16711. https://doi.org/10.1016/j.heliyon.2023.e16711
  14. Sung, H. K., Kim, T. J., Kim, H. M., Youn, S. J., Choi, Y., Lee, N. Y., Oh, H. J., Kwon, H. S., & Shin, S. M. (2024). Anti-Wrinkle and Skin Moisture Efficacy of 7-MEGATM: A Randomized, Double-Blind, Placebo Comparative Clinical Trial. Nutrients16(2), 212. https://doi.org/10.3390/nu16020212
  15. Nunes, E. A., & Rafacho, A. (2017). Implications of Palmitoleic Acid (Palmitoleate) On Glucose Homeostasis, Insulin Resistance and Diabetes. Current drug targets18(6), 619–628. https://doi.org/10.2174/1389450117666151209120345
  16. Markey, O., McClean, C.M., Medlow, P., Davison, G.W., Trinick, T.R., Duly, E., Shafat, A. (2011). Effect of cinnamon on gastric emptying, arterial stiffness, postprandial lipemia, glycemia, and appetite responses to high-fat breakfast. Cardiovasc Diabetol, 10, 78. doi: 10.1186/1475-2840-10-78
  17. Curb, J.D., Wergowski, G., Dobbs, J.C., Abbott, R.D., Huang, B. (2000). Serum lipid effects of a high-monounsaturated fat diet based on macadamia nuts. Arch Intern Med, 160(8), 1554-1158. DOI: 10.1001/archinte.160.8.1154
  18. Järvinene, R., Larmo, P.S., Setälä, N.L., Yang, B., Engblom, J.R., Viitanen, M.H., Kallio, H.P. (2011). Effects of oral sea buckthorn oil on tear film fatty acids in individuals with dry eye. Cornea, 30(9), 1013-1019.  DOI: 10.1097/ICO.0b013e3182035ad9
  19. Kimura, Y., Mori, D., Imada, T., Izuta, Y., Shibuya M., Sakaguichi, H., Oonishi, E., Okade, n., Matsumoto, K., Tsuboto, K. (2017). Restoration of tear secretion in a murine dry eye model by oral administration of palmitoleic acid. Nutrients, 9(4), 364. DOI: 10.3390/nu9040364
  20. Yang B., Bonfigli, A., Pagani, V., Isohanni, T. (2009). Effects of oral supplementation and topical application of supercritical CO2 extracted sea buckthorn oil on skin ageing of female subjects. J Applied Cosmetology, 27(1), 13-25. Retrieved from https://naturalingredient.org/wp/wp-content/uploads/ART.N__2.pdf
  21. Ito, H., Asmussen, S., Traber, D. L., Cox, R. A., Hawkins, H. K., Connelly, R., Traber, L. D., Walker, T. W., Malgerud, E., Sakurai, H., & Enkhbaatar, P. (2014). Healing efficacy of sea buckthorn (Hippophae rhamnoides L.) seed oil in an ovine burn wound model. Burns : journal of the International Society for Burn Injuries40(3), 511–519. https://doi.org/10.1016/j.burns.2013.08.011
  22. Edraki, M., Akbarzadeh, A., Hosseinzadeh, M., Tanideh, N., Salehi, A., Koohi-Hosseinabadi, O. (2014). Healing effect of sea buckthorn, olive oil, and their mixture on full-thickness burn wounds. Adv Skin Wound Care, 27(7), 317-323. DOI: 10.1097/01.ASW.0000451061.85540.f9